제정 기술표준원고시 제2002 - 60호 (2002. 02. 19) 개정 기술표준원고시 제2003 - 523호 (2003. 5. 24)

전기용품안전기준

K 60027-4

[KS C IEC 2002]

전기 기술분야에 사용되는 기호

제 4부 : 회전기기에 사용되는 양의 기호

목 차

1.	기하학		2
2.	운동학		4
3.	동력학		5
4.	손실, '	¹ 전이	ã
5.	전기량	과 자기량	7
6.	수와 ㅂ	율()
7.	전기 기	기 표기용 권장 아래첨자	1
ユ	림		2

한 국 산 업 규 격

전기 기술분야에 사용되는 기호 IEC 60027-4: 2002 제4부: 회전기기에 사용되는 양의 기호 (IEC 60027-4: 1985, IDT)

KS C

Letter symbols to be used in electrical technology

- Part 4: Symbols for quantities to be used for rotating electrical machines

1. 기하학

정의는 그림1에서 그림4까지에서 설명되어 있다.

*1 U	ाने को	기호		دا دا	비고
항목	명칭	주	보조	단위	n 77
1	코어의 전체길이	1		m	
2	철 길이	l_{Fe}		m	l _{Fe} =l - n _v l _v
3	유용한 철 길이	l_{u}		m	l_u = k_{Fe} • l_{Fe}
4	통풍관 하나의 길이	$l_{\rm v}$		m	
5	반회전 평균 도체 길이	l_{av}		m	
6	돌출물 권선의 평균 도체 길이	$l_{\rm b}$		m	l _b =l _{av} - 1
7	등가 코어 길이	le		m	그림 1
8	표면 회전자의 지름 (공극에 접근)	d		m	
9	고정자의 외경	d_{se}		m	
10	고정자의 내경	d_s	$ m d_{si}$	m	
11	회전자의 외경	d_r	$d_{\rm re}$	m	
12	회전자의 내경	d_{ri}		m	
13	정류자의 직경	d_{c}		m	
14	전극 높이	h_p		m	
15	전극 제동자 높이	$h_{ m pi}$		m	
16	전극체 높이	h_{p2}		m	
17	고정자 이음쇠 높이	h_{ys}		m	
18	회전자 이음쇠 높이	$h_{ m yr}$		m	
19	고정자 홈 깊이	h_s		m	1)
20	회전자 홈 깊이	$h_{\rm r}$		m	1)
21	브러시 높이	r	$h_{\rm b}$	m	
22	공극(길이)	δ	g	m	
23	최소 공극	δ ₀		m	그림 3
24	홈을 포함한 등가 공극	бе		m	$\delta_e = \delta \cdot k_{Cs} \cdot k_{Cr}$
25	홈과 철 자기를 포함한 유효 공극	$\delta_{ m ef}$		m	$\delta_{ef} = \delta_e (1 + U_{Fe}/U_{\delta})$

취묘	rd 주l	기호		دا ما	מן יין
항목	명칭	주	보조	단위	비고
26	고정자 이 높이	h_{ds}		m	¹) h _{ds} =h _s 실제적으로
27	회전자 이 높이	$h_{ m dr}$		m	¹) h _{dr} =h _s 실제적으로
28	기기축 높이	Н		m	출판물 72 참조
29	전극 제동자의 넓이	bp	b_{p1}	m	
30	전극체의 넓이	b_{p2}		m	
31	등가 주변 장치 전극 넓이	b_{pe}		m	²) 그림 3
32	고정자 홈 넓이	bs		m	3)
33	회전자 홈 넓이	b _r		m	3)
34	고정자 이 넓이	$b_{ m ds}$		m	3)
35	회전자 이 넓이	$\mathrm{b_{dr}}$		m	3)
36	브러쉬 접선 넓이	t	b _t	m	
37	브러쉬 호 넓이	a	ba	m	
38	등가브러쉬 넓이	b _{te}		m	
39	인접한 정류자 분분 사이의 절연 넓이	b_{cI}	$b_{ m cIs}$	m	
40	호길이로 측정된 피치	τ	t	m	
41	전극 피치	$ au_{ m p}$	$t_{ m p}$	m	
42	고정자 홈 피치	$ au_{ m s}$	$t_{\rm s}$	m	
43	회전자 홈 피치	$ au_{ m r}$	$t_{ au}$	m	
44	정류자 부분 피치	$ au_{ m c}$	t_{c}	m	
45	표면 면적 ; 단면적	A	S	m^2	
46	부피	V		m^3	

 $^{^{1}}$) 1,2로 번호 매겨진 깊이 부분... 공극에서 시작한 (그림 4참조). 아래첨자 $_{
m S}$ 또는 $_{
m C}$ 혼동의 여지가 없다면 생략할 수 있다.

²) 주변장치의 폭은 점극자 지름 d와 관계 있다.

 $^{^3}$) 공극부터 시작해서 수치가 다른 폭은 1, 2,...순으로 번호를 매긴다(그림 4참조). 아래첨자 s 또는 r은 혼동의 여지가 없다면 생략할 수 있다.

2. 운동학

항목	명칭	기호		단위	비고
0 7	0 0	주	보조	는 기	7,35
47	시간 상수	Т		S	$\tau = \omega_0 T^{-1}$
48	전기 각 주파수	ω		rad/s	
49	기준 각 주파수	ω_0		rad/s	
50	고정계의 각 주파수	$\omega_{\scriptscriptstyle S}$		rad/s	2)
51	회전계의 각 주파수	ω_{r}		rad/s	3)
52	기기적 각속도	Ω_{m}		rad/s	
53	회전 주파수	n		s^{-1}	
54	조각	S		1	$S = \frac{\omega_{s}/P - \Omega_{m}}{\omega_{s}/P}$

¹)기호 T는 초단위로 시간 상수로 권고된다. 만일 시간 상수가 P,u로 표현된다면 우선되는 기호는τ=∞T이다.(p,u는 단위 당의 약어이고 무차원 양의 단위의 또다른 표현이다. 이것은 상대적인 값으로 전기 기기의 특성이 주어졌을 때 일반적으로 사용된다.

 $^{^{2)}}$ a.c.기기에서 ω_{s}/p 는 동위각속도이다.

³⁾회전축에 대하여.

3. 동력학

항목	명칭	기호		단위	비고	
8 =	앙폭 병정 -	주	보조	인케	M 77	
55a	에너지	E	W	J		
55b	일	W	A	J		
55c	열량	Q		J		
56	관성 모멘트	J		kg ⋅m²		
57	공칭 가속 시간	$T_{ m J}$		S	$T_{J} = \cdot \Omega^{2} \text{mN/P}_{N} ; ^{1)}$ 411-18-16 ⁴⁾	
58	저장된 에너지 상수	Н		S	$H = \frac{1}{2} \mathbf{J} \cdot \Omega^{2}_{mN} / S_{N} ; ^{1)}$ $411 - 18 - 14 ^{4)}$	
59	전자기 토크	$T_{\rm e}$	$ m M_e$	N·m	2) 3)	
60	축 토크	T_{s}	\mathbf{M}_{s}	N·m		
61	회전 기기의 손실 토크	T_d	$ m M_d$	N·m	3)	
62	회전자 고정 토크	T_1	M_{l}	N·m	411-18-02 ⁴⁾ 34-1, 2.13 ⁵⁾	
63	당김(pull-up) 토크	T_{u}	\mathbf{M}_{u}	N·m	411-18-07 ⁴⁾ 34-1, 2.15 ⁵⁾	
64	벗김(pull-out) 토크, 파괴(breakdown) 토크	T_{b}	$\mathrm{M_{b}}$	N·m	411-18-10 ⁴⁾ 34-1, 2.17 ⁵⁾	
65	(동기의) 삽입(pull-in) 토크	$T_{ m pi}$	$ m M_{pi}$	N·m	411-18-08 4)	
66	(동기의) 벗김(pull-out) 토크	T_{po}	$ m M_{po}$	N·m	411-18-11 ⁴⁾ 34-1, 2.17 ⁵⁾	

 $[\]Omega_{\mathrm{mN, }}$ $\mathrm{P_{N, }}$ $\mathrm{S_{N}}$ 는 정격 속도 값이다. Ω_{0} = $\frac{\omega_{\mathrm{S}}}{P}$ 로 곱해질 때, 때때로 H는 p.u로 사용된다.

 $^{^{2)}}$ 같은 분석에서 토그가 시간 상수 T와 나타날 때 보조기호 M이 혼동을 피하기 위해 사용해야 한다.

 T_d 는 각속도 Ω_m 에서 토크로 표현되는 기기회전자의 손실이다. 모터협정에서 운동 (motion) 방정식은 T_e = $J \cdot d\Omega_m/dt + T_d + T_s$ 이다.

⁴⁾ KS C IEC 60050(411) 항목번호. 국제 전기기술 용어, 제411장:회전기기(1973,초판)

⁵⁾ KS C IEC 60034-1 부속항 번호. 회전 전기 기기: 제1장 : 정격 및 성능(1983,열덟째 판).

4. 손실, 열전이

항목	명칭	7]	<u>ই</u>	단위	비고
87	0.0	주	보조	인제	H 72
67	열에 의한 손실 전력	P_{d}		W	
68	열흐름율	$\Phi_{ ext{th}}$		W	
69	온도 상승	$\Delta \vartheta$, $\Delta \Theta$		K	
70	주위 온도	ϑ_a , Θ_a		\mathbb{C}	
71	냉각제 온도	ϑ_{c} , Θ_{c}		\mathbb{C}	
72	열 전도성	G_{th}		W/K	
72a	열 전이 계수	a	K	$\frac{W}{m^2 \cdot K}$	
72b	열전도도	λ	k	$\frac{W}{m \cdot K}$	
73	열 저항	R_{th}		K/W	
74	체적 흐름율	\mathbf{q}_{v}		m³/s	1)
75	압력	ΔΡ		N/m ²	
76	하이드롤릭 저항	R_{h}		Ns/m ⁵	$R_h = \frac{\triangle p}{q_v}$

¹⁾ 혼동 여지가 없다는 전제 하에 q는 아래첨자 없이 사용 할 수 있다.

5. 전기량과 자기량¹⁾

항목	명청	7]	<u>ই</u>	단위	비고
30 47	6 8	주	보조	인케	비포
77	(자기)자속 누설	Ψ		Wb	121-01-27 ²⁾ Ψ=N • Ф
78	전기 부하	A		A/m	411-16-03 2)
79	공극 전력	P_{δ}		W	
80	정상 상태의 페회로 전류	I_{k}		A	411-18-22 2)
81	초기 대칭 페회로 전류	$ m I_{ko}$		A	411-18-23 2)
82	최대 비대칭 페회로 전류	İk		A	411-18-25 2)
83	순간(페회로)전류	I' _k		A	411-18-26 2)
84	부-순간(페회로)전류	I″ _k		A	411-18-27 2)
85	접극자 페회로 시간 상수	T_a		S	34-4, 20 ³⁾
86a	직접축 순간 개회로 시간 상수	T'do		S	411-18-29 2)
86b	직접축 순간 폐회로 시간 상수	T' _d		S	411-18-30 2)
86c	직접축 부 접극자 개회로 시간상수	T" _{do}		S	411-18-31 2)
86d	직접축 부 접극자 폐회로 시간상수	T″ _d		S	411-18-32 2)

¹⁾ 79~107 항목중 대부분은 a.c. 기기를 지칭하며 몇몇은 동기기기(synchronous machine)을 지칭한다.

²⁾ KS C IEC 60050 항 번호: 국제 전기기술 용어, 제121장: 전자기(1978판)과 제411장: 회전기기(1973,초판).

³⁾ KS C IEC 60034-4 부속항 번호: 회전 전기 기기, 제4부: 시험으로부터 동기 기기 양의 결정 방법.

장). 단	14 FI	7]	기호		비고
항목	명칭	추	보조	단위	n 17
90a	구적법축 순간 개회로 시간상수	T′ _q		S	411-18-34 1)
90b	구적법축 순간 폐회로 시간상수	T'q		s	411-18-35 1)
90c	구적법축 부-순간 개회로 시간상수	T" _{qo}		s	411-18-36 1)
90c	구적법축 부-순간 페회로 시간상수	T"q		s	411-18-37 1)
94	여자 시스템 실링 전압	U_{Ep}		V	411-18-41 1)
95a	직접 축 동기 리액턴스	X_d		Ω	411-20-07 1)
95b	직접 축 순간 리액턴스	X' _d		Ω	411-20-09 1)
95c	직접 축 부-순간 리액턴스	X″ _d		Ω	411-20-11 1)
98a	구적법축 동기 리액턴스	X_{q}		Ω	411-20-08 1)
98b	구적법축 순간 리액턴스	X′q		Ω	411-20-10 1)
98c	구적법축 부-순간 리액턴스	X"q		Ω	411-20-12 1)
101	양극 상-순서 리액턴스	X_1	X_p	Ω	411-20-14 1)
102	음극 상-순서 리액턴스	X_2	X _n	Ω	411-20-15 1)
103	제로 상-순서 리액턴스	X_0	X_h	Ω	411-20-16 1)
104	양극 상-순서 리액턴스	R_1	R_p	Ω	411-20-18 1)
105	음극 상-순서 리액턴스	R_2	R_n	Ω	411-20-19 1)
106	제로 상-순서 리액턴스	R_0	R_h	Ω	411-20-20 1)
107	폐회로 비율	k_k		1	411-20-21 1)
107a	출력(전력)	Р	Pout	W	411-21-04 1)
107b	입력 전력	P_{in}		W	411-21-06 1)

¹⁾ KS C IEC 60050(411) 항 번호: 국제 전기기술 용어, 제411장: 회전 기기(1973,초판)

6. 수와 비율

2) II	nd al	기호		r] 0]	nl =
항목	명칭	주 주	보조	단위	비고
108	쌍극자 수	Р			
109	평행경로 수 -정류자없는 권선: 매 상 -정류자를 갖는 권선: 매 반 아마추어	a			
110	직렬 교대수	N			
111	슬럿수	Q			
112	정류자 부분수	K			
113	코일 옆 매 슬럿 과 층의 수	u			u=K/Q
114	도체수	z			
115	슬럿 내 도체수	$Z_{ m Q}$			
116	코일내 직렬 교대수	Ne			
117	매 극과 상의 슬럿수	q			
118	환기 도관수	$n_{\rm v}$			
119	슬럿 피치로 표현한 코일간격	Y_Q		1	411-08-19 1)
120	부분 피치수로 표현한 정류자 피치	Y _c		1	411-08-27 1)
121	총 손실 인자	σ		1	
122a	고정자 손실 인자	Øs		1	
122b	회전자 손실 인자	Or		1	411-08-31 1)
123	권선 인자	k_{w}		1	411-08-29 1)
124	펼침 인자 ,분포 인자	k_d		1	411-08-30 1)
125	피치 인자, 현 인자	d_p		1	
126	휨 인자	k_{sq}		1	
127	변화 비율 (고정자 권선과 관련된 회전 자 권선)	n _{sr}		1	$n_{sr} = \frac{k_{ws} \cdot N_s}{k_{wr} \cdot N_r}$
128	등가 극 아크 비율	$a_{\rm e}$		1	$a_c = b_{pc} / \tau_p$
129	브러쉬 적용범위 비율	β		1	$\beta=b_{tc}/\tau_c$
130	전류에 관계한 전압 변이각	ф, Ф		rad	
131a	회전 각	ϑ, ⊖		rad	
131b	동기 기기에서 각 변화(부하 각)	ϑl, θl	δ	rad	

항목	명칭	7]	<u>ত</u>	단위	비고
897	75 75 	추	보조	인계	미포
132	조화 서수	V			
133	슬럿 공간 인자	kQ		1	
134	철 공간 인자	$ m k_{Fe}$		1	
135a	고정자 슬럿의 운송 인자	k _{Cs}		1	
135b	회전자 슬럿의 운송 인자	k _{Cr}		1	
136	운송 인자	k_{C}		1	$k_C=k_{Cs}$ • k_{Cr}
137	저항의 표면 효과 인자	k_{R}		1	
138	인덕턴스 의 표면효과 요인	k_L		1	
139	고정된 회전자의 명확한 전력비율	Si		1	$s_1 = \frac{S_1}{P_N} 2$ $i_1 = \frac{I_1}{I_N}$
140	고정된 회전자 전류비율	\mathbf{i}_{l}		1	$i_1 = \frac{I_1}{I_N}$

¹⁾ KS C IEC 60050(411) 항 번호: 국제 전기기술 용어, 제411장: 회전 기기(1973,초판)

 $^{^{2)}}$ 모터의 유효한 공식: 발전기에 대하여 $s_1 = \frac{S_1}{P_N}$

7. 전기 기기에서 사용하는 권고된 아래첨자

항목	rd el	아래첨자		
	명칭	은형식	긴 형식	
201	접극자	a		
202	장	f		
203	여기 시스템, 여기 원	Е		
204	직접 축	d		
205	구적법 축	q		
206	교류의	~, a		
207	직류	-, d		
208	물결	, u		
209	이력	Ну		
210	소용돌이 전류	Ft		
211	절 연	I	Is	
212	평균(중앙값)	av		
213	등가	e	eq	
214	정격	N 1)	rat	
215	명목상의	n	nom	
216	회전자	r		
217	고정자	S		
218	권선 충만	b		
219	손실된	d		
220	시리즈	ser		
221	분로,평행	par		
222	효과	ef		
223	갭	δ		
224	추가	ad		
225	손실	σ		
226	구리	Cu		
227	알루미늄	Al		
228	칠	Fe		
229	오일	U		
230	물	W		
231	공기	A		
232	수소	Н		

 $^{^{1)}}$ KS C IEC 60027-1 수정판 4의 아래첨자 r은 회전자를 뜻하는 아래첨자와 혼동을 초래할 수 있는 여지가 있기 때문에 회전기기에서는 권고되지 않는다

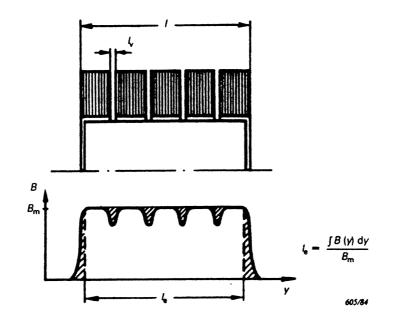


그림 1

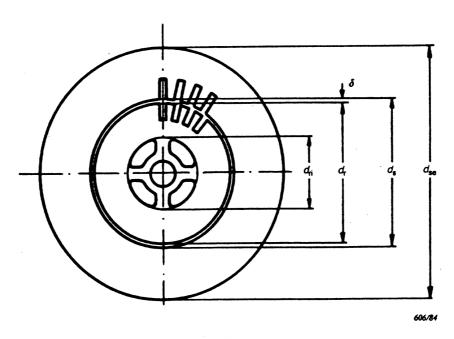
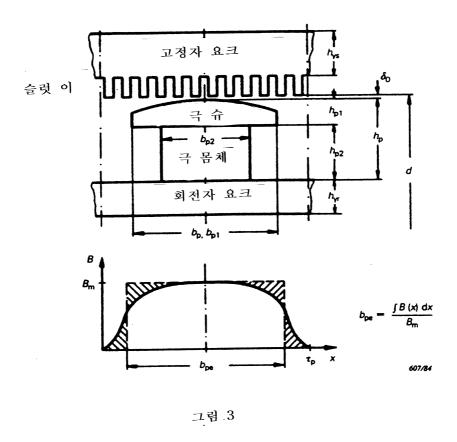



그림 2

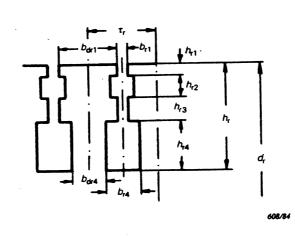


그림 4

- 주- 1. 확대된 그림3과 그림4는 지름에 의존하고 정의되는 넓이이다.
 - 2. 그림3에서 극슈의 원어는 pole shoe 이다.