

http://www.motie.go.kr

보도자료

2017년 11월 06일(월) 조간부터 보도하여 주시기 바랍니다. (인터넷, 방송, 통신은 11. 05.(일) 오전 11시 이후 보도 가능)

배포일시	2017. 11. 03.(금)	담당부서	화학서비스표준과	
담당과장	김숙래 과장(043-870-5390)	담 당 자	남택주 연구관(043-870-5396)	

연료전지(IEC TC105) 국제표준화 회의 개최

- 우리나라 제안, '노트북용 연료전지 요구시항' 신규 표준안 채택 논의 등 -
- □ (회의 개요) 산업통상자원부 국가기술표준원은 연료전지 국제표준화 (IEC TC105) 총회와 작업반 회의를 11월 06일(월)부터 10일(금)까지 5일간 임피리얼 팰리스 서울호텔에서 개최한다.
 - * IEC/TC105(연료전지)는 연료전지의 용어, 시험방법, 성능평가, 안전성 등에 대해 표준화하는 기술위원회로, 1990년 설립되어 14개의 작업반을 운영하고 있음.
 - o 이번 회의에는 연료전지기술위원회(TC105) 총회와 연료전지 보조전원 (WG6), 마이크로 연료전지의 호환성(WG10), 연료전지 에너지저장 시스템(WG13) 등 3개 작업반 회의에 15개국 50여명이 참석한다.
- □ (개최 배경) 수소경제실현을 위한 핵심기술인 연료전지는 고정형 (발전용, 가정용), 수송용, 휴대용 등으로 분류되며, 세계시장규모('23년)가 578억 달러 규모까지 확대가 예상되는 분야로 국제표준 선점을 위한 경쟁이 치열해 지고 있다.
 - o 한국은 '마이크로 연료전지의 호환성' 작업반(WG10) 의장을 수임하고 발전용, 수송용 등 연료전지 국제표준화 논의에 적극 대응하고 있다.

- □ (주요 의제) 휴대폰, 노트북용 마이크로 연료전지 이외도 지게차, 산업용 트럭 등의 보조전원(백업전원용) 연료전지 성능시험방법 등 총 6건의 표준안에 대해서도 논의한다.
 - o 특히, 마이크로 연료전지 작업반(WG10)에서는 다양한 전자기기와의 호환성(전력 및 데이터 호환)에 대한 각국의 의견과 우리나라에서 제안한 신규 국제표준* 건에 대한 표준화를 위한 논의가 진행할 예정이다.
 - * 노트북용 연료전지 요구사항(Micro fuel cell power systems Power and data Interchangeability-compatibility requirements of fuel cell systems applicable to Notebook)
 - o 또한, 이번 회의에는 독일 썬파이어, 일본 도시바와 파나소닉 등 연료 전지 관련 제조사, 지게차 또는 산업용 트럭 등을 생산하는 한국의 현대건설기계와 ㈜두산산업차량에서도 표준안 논의에 참여한다.
- □ (개최 효과) 스마트폰, 노트북을 비롯해 착용 가능 컴퓨터 등의 수요 확대로 전원이 없는 장소에서의 휴대기기를 사용하고자 하는 소비자의 욕구가 증가하면서 마이크로 연료전지의 수요는 확대할 것으로 예상된다.
 - * 2016년 스마트폰 및 노트북 글로벌 시장규모(L社제공)는 각각 1,520백만대(400조원)와 155백만대(109.7조원)로, 향후 기존 리튬전지(보조배터리)를 대체할 새로운 산업 창출과 더불어 마이크로 연료전지의 수요가 확대될 것으로 전망.
 - o 우리나라가 제안한 노트북용 마이크로 연료전지(1건)는 신규 표준안 으로 채택해, 표준개발을 진행할 것으로 예상하고 있다.
- □ 국가기술표준원은 연료전지산업의 표준화 역량강화를 위하여 '13년 부터 한국에너지공단을 표준개발협력기관으로 지정하여 업계와 협의 체계를 구축하고 한국산업규격(KS)표준 및 국제표준 개발에 적극 대응하고 있으며,

o 신재생에너지 표준화 및 인증지원 사업을 통해 연료전지 국제표준화 기반조성 사업을 수행 중에 있으며, 향후 지원 확대를 위한 이행안 (로드맵) 등을 작성할 계획이다.

【붙 임】1. IEC TC105 국제표준화 회의 개요

- 2. 연료전지 개요
- 3. 연료전지(노트북용) 국제표준 제안
- 4. IEC TC105(연료전지기술) 현황

이 보도자료와 관련하여 보다 자세한 내용이나 취재를 원하시면 산업통상자원부 화학서비스표준과 남택주 연구관(☎ 043-870-5396)에게 연락주시기 바랍니다.

[붙임 1]

IEC TC105 국제표준화 회의 개요

□ 회의 개요

○ 회의명 : IEC TC105(연료전지 기술) 총회 및 작업반 회의

○ 기간 : 2017. 11. 06.(월) ~ 11. 10.(금)

ㅇ 장소 : 임피리얼 팰리스 서울호텔

○ 주최/주관 : 국가기술표준원 /우석대학교, 한국정밀화학산업진흥회

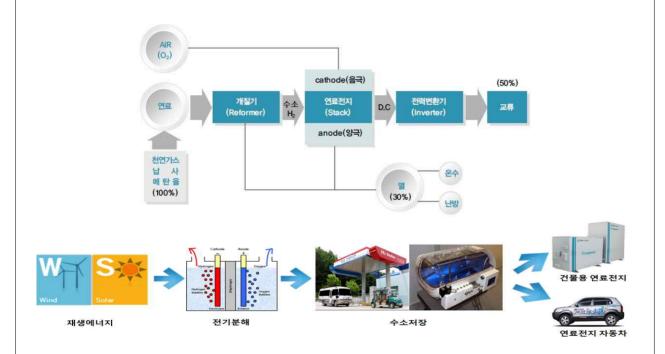
○ 참가 규모 : 미국, 일본, 중국 등 15개국 전문가 약 50여명

□ 회의 일정

	11.6(월)	11.7(화)	11.8(수)	11.9(목)	11.10(금)
오전	WG6 회의	WG6,13 회의	워크샵***	총회	WG10회의
오후		WG13 회의	CAG 회의		WG13회의
저녁	-	-	Welcome reception*	만찬**	-

^{*} Welcome reception : `17.11.08.(수) 18:30~20:00, 참석예정인원: 40명

□ 작업반(WG)회의 주요 의제


작업반	의장	작업반명	주요 의제	
WG6	Georgios Tsotridis (네덜란드)	연료전지보조전원시스템 (Fuel cell system for propulsion and auxiliary power units)	산업용 트럭에 사용하는 보조전원에 대한 안전, 성능	
WG10	이홍기 교수 (우석대)	마이크로 연료전지-호환 (Moro fuel cell power systems - Interchangeability)	마이크로 연료선시의 선덕 및 네이터 오온 시규 NNMIP 설명 및 일정 논의	
WG13	Tsuneji Kameda(일본) Stephen McPhail(이태리) Hongmei YU(중국)	연료전지기술-에너지 저장시스템 (Fuel cell technologies - Energy storage systems using fuel cell modules in reverse mode)	연료전지 모듈을 이용한 에너지저장	

^{**} 총회만찬: `17.11.09.(목) 18:00~20:00, 국장님 만찬사, 참석예정인원: 50명 *** Int'l Standard Conference for Fuel Cell - Joint 6th Woosuk International Energy Forum

[붙임 2]

연료전지 개요

- ○(**정의**) 수소에너지 기술은 물, 유기물, 화석연료 등의 화학물 형태로 존재하는 수소를 분리·생산해서 이용하며, 연료전지는 수소를 연료로 공급되는 한 재충전 없이 계속해서 전기를 생산하고, 반응 중 발생된 열은 온수 및 난방으로 이용
 - 연료전지는 수소와 산소의 화학반응으로 생기는 화학에너지를 직접 전기에너지로 변환시키는 기술로서 생성물이 전기와 순수(純水)인 발전효율 30~40%, 열효율 40% 이상으로 총 70~80%의 효율을 갖는 기술임

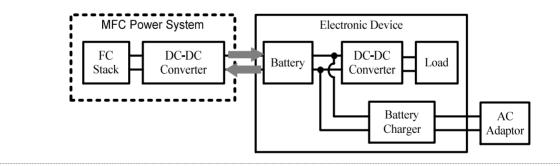
전해질막은 전극이 접촉되지 않는 범위에서 가능한 얇게 하고, 단위 셀은 이론적으로 전압을 1.23Volt 까지 생성시킬 수 있으나, 실제는 0.7V 정도를 생산함. 따라서 연료전지는 필요한 전압을 위하여 겹층으로 구성하며 요구되는 출력을 얻기위해 표준 크기의 스택을 직렬로 연결하여 상용 연료전지를 구성

- 개질기(Reformer) : 화석연료로부터 수소를 발생시키는 장치
- 스택(Stack) : 단위전지를 수십장, 수백장 쌓아 올린 본체
- 전력변환기(Inverter) : 발생한 직류(DC)를 교류(DC)로 변환시키는 장치
- 주변보조기기(BOP:Balance of Plant) : 펌프류 및 센서 등 주변 장치

○(**범위**) 연료전지의 산업별로 분류하면 발전용, 가정용, 수송용, 휴대용 등으로 구분할 수 있음.

(연료전지 적용 산업분류의 예>
원지력
구소 저정/수송/분배
전박
플릭
전기를
변료전지
비스
태양광
관업기를
변료전지
지등지
지등지
사망합학적
생물학학적
생물학학적
생물학학적
생물학학적
발전용
건물용
휴대용
잠수함

< 연료전지의 규모별 사용용도의 예>


* DMFC(직접메탄을 연료전지, Direct Methanol Fuel Cell), SOFC(고체산화물 연료전지, Solid Oxide Fuel Cell), PEMFC(고분자전해질 연료전지, Polymer Electrolyte Membrane Fuel Cell), MCFC(용융탄산염 연료전지, Molten Carbonate Fuel Cell)

연료전지(노트북용) 국제표준 제안

- (추진배경) 세계 미래 에너지시장의 선점을 위하여 휴대용 연료전지 관련 국내 기술의 국제표준화 신규 제안 추진
 - * 에너지표준화 및 인증지원사업(에너지공단) 과제 "휴대용 연료 전지의 양방향 전력 전송 특성의 평가방법 국제표준 개발"('14.7.1~'17.6.30, 2억원, KSCIA) 결과물임.
- (표준개요) 노트북용 연료전지에 대한 성능요구사항
 - 표 준 명 : 연료전지 기술 마이크로 연료전지 파워시스템(전력 및 데이터 호환)
 - 노트북용 연료전지 요구사항

(Micro fuel cell power systems – Power and data Interchangeability - compatibility requirements of fuel cell systems applicable to Notebook)

- 기술위원회 : IEC/TC 105(연료전지기술)
- 제 안 자 : 우석대학교 이홍기 교수(현 IEC TC105/WG10 Convenor)
- 주 요 내 용 : '노트북용 마이크로 연료전지 전력시스템의 안전성과 성능, 전력 및 데이터 호환성'에 대해 규정

○ (향후계획) NWIP 제안('17.7월), 제안서 발표 및 승인('17.11월, 서울 총회)

IEC TC105(연료전지 기술) 현황

가. Scope

- ○발전용, 가정용, 수송용 보조전원, 휴대용 등 분야에서 연료전지의 이용 시 안전, 성능시험방법, 설치, 호환 등에 관한 국제표준 개발
- * 표준개발 주도국 : 일본, 독일, 미국, 프랑스, 중국

나. 의장 및 간사

- ○의장: Mr Fumio Ueno(일본, ~2017.12 까지) / Mr Laurent Antoni(프랑스, ~2023.09 까지)
- ○간사(Secretary): Mr Wolfgang Winkler(독일)
 - 보조간사(Assistant Secretary) : Mr Gerhard Imgrund(독일)
- Technical Officer: Mr Charles Jacquemart(독일)

다. **회원국**: 32개국

P-멤 버	한국, 캐나다, 중국, 덴마크, 이집트, 핀란드, 프랑스, 독일, 이탈리아, 일본, 네덜란드, 스페인, 남아프리카공화국, 영국, 미국, 스웨덴, 스위스 (17개국)
O-멤버	오스트리아, 호주, 벨기에, 브라질, 이란, 이스라엘, 노르웨이, 폴란드, 포르투갈, 루마니아, 러시아, 세르비아, 태국, 터키, 체코 (15개국)

라. 조직

마. 작업반 현황

구분	WG 명칭	Convenor (국가)
WG 1	Terminology (용어)	zhigang qi (중국)
WG 2	Fuel cell modules (연료전지 모듈)	Eckhard Schwen demann(독일)
WG 3	Stationary fuel cell power systems - Safety (고정형 연료전지-안전)	Kelvin Hecht (미국)
WG 4	Performance of Fuel Cell Power Systems (고정형 연료전지-성능)	Noboru Hashimoto(일본)
WG 5	Stationary Fuel Cell Power Systems - Installation (고정형 연료전지-설치)	Eckhard Schwen demann(독일)
WG 6	Fuel cell system for propulsion and auxiliary power units (APU) (연료전지 보조 전원시스템)	Georgios Tsotridis (네덜란드)
WG 7	Portable fuel cell power systems - Safety (휴대용 연료전지-안전)	Toshiki Shimizu (일본)
WG 8	Micro fuel cell power systems - Safety (마이크로 연료전지-안전)	Ms Karen Quackenbush (미국)
WG 9	Micro fuel cell power systems - Performance (마이크로 연료전지-성능)	Hiroshi Harvey Yokoyama(일본)
WG 10	Micro fuel cell power systems - Interchangeability (마이크로 연료전지-호환성)	Hong Ki lee (한국)
WG 11	Single cell test methods for PEFC and SOFC (PEFC 및 SOFC 단위셀 시험방법)	Kazuo Koseki (일본)
WG 12	Stationary fuel cell power systems - Small stationary fuel cell power systems with combined heat and power output(고정형 연료전지-가정용)	Nils Chmielewski (스위스)
WG 13	Fuel cell technologies - Energy storage systems using fuel cell modules in reverse mode (연료전지-에너지저장시스템)	Tsungi Kameda(일본) Stephen McPhail(이태리) Hongmei YU(중국)
WG 14	Life cycle assessment (수명주기 평가)	Kiyoshi Dowaki(일본) Noboru Hashimoto (일본)

바. 국내외 표준 현황

- ○국제표준(IS) : IEC 62282-1(용어) 등 **19종 제정**
- * IEC 82282-2-100(연료전지 모듈-안전성) 등 **12종 개발 중**
- ○국가표준(KS) : KSC IEC 62282-1(용어) 등 **11종 제정**